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Abstract

While diffusion models have achieved impressive results
in text-to-image generation, maintaining visual consistency
of a subject across multiple images remains a significant
challenge. This project investigates methods to improve
identity preservation in generative pipelines by systemati-
cally evaluating combinations of fine-tuning and inference-
time techniques. We introduce a pipeline that takes up to
five reference images, a name, and a brief description of a
subject to produce a sequence of images aligned with input
sentences. The best performing pipeline combines a Stable
Diffusion baseline model with DreamBooth and style-based
LoRA fine-tuning, with token substitution at evaluation time.
Human evaluations and quantitative metrics (CLIP simi-
larity and LPIPS distance) show that this composite model
generates high quality outputs with strong subject similarity
and output consistency. Discussion includes failure cases
related to overfitting and visual ambiguity, suggesting di-
rections for future work on disentangling style from identity
in generative models.

1. Introduction

Modern generative models have made significant
progress in producing highly realistic images from text
prompts. However, a persistent challenge remains: generat-
ing consistent depictions of the same character across mul-
tiple images. Even when given identical or similar prompts,
diffusion models often produce visually distinct outputs,
making it difficult to preserve a subject’s identity across dif-
ferent scenes and contexts.

This inconsistency presents a major limitation for appli-
cations that depend on coherent visual narratives, such as il-
lustrated storytelling, personalized gaming avatars, or brand
representation. Solving this problem could unlock a range
of creative possibilities, from enabling children’s authors to
illustrate entire stories with a consistent protagonist to al-
lowing gamers to bring personalized avatars to life.

Although many methods have been developed to im-
prove identity preservation in diffusion models, the inter-
actions between these approaches is rarely explored. To ad-
dress this gap, this project aims to develop a model pipeline
that, during training, takes as input up to five reference im-
ages of a subject, along with the subject’s name and a brief
description (fewer than 25 words). At inference time, the
pipeline receives a series of sentences that reference the
subject by name and generates one 512 × 512 image per
sentence. Each generated image should depict a character
that is visually consistent with the reference photos while
also aligning semantically with the content of the corre-
sponding input sentence.

Figure 1. Example images generated by this pipeline, with stable
diffusion, DreamBooth, LoRA, and token substitution.

After systematically exploring combinations of tech-
niques, the best pipeline fulfilling this objective is a Stable
Diffusion model fine-tuned with DreamBooth and a style-
based LoRA, with data augmentation during training and
token substitution at evaluation.

1



2. Related Work
2.1. Diffusion Models

Early generative models for image synthesis, such as
Generative Adversarial Networks (GANs) [1], demon-
strated impressive image generation capabilities but suf-
fered from notable limitations, including training instabil-
ity and mode collapse. GANs involve training a generator
and a discriminator in a minimax game: the generator tries
to produce realistic images to fool the discriminator, while
the discriminator learns to distinguish real images from fake
ones. While effective in many domains, balancing this ad-
versarial setup proved challenging, motivating the search
for more stable generative methods.

Denoising Diffusion Probabilistic Models (DDPMs) [2]
offered a breakthrough in this regard by framing image gen-
eration as a two-stage process: a forward diffusion process
gradually adds Gaussian noise to an image over many steps,
and a learned reverse process denoises the noisy input step-
by-step to reconstruct the image. At evaluation time, sim-
ply using the reverse process yields an effective generative
model. Although initially used for unconditional genera-
tion, DDPMs provided a flexible and robust foundation that
was later extended to conditional settings with text prompts.

Text-to-image generation became feasible with models
such as DALL-E [3] and Stable Diffusion [4]. DALL-
E employs a discrete VAE for image representation and a
transformer-based decoder conditioned on text embeddings.
In contrast, Stable Diffusion adopts a latent diffusion ap-
proach that operates in a lower-dimensional latent space
learned by a variational autoencoder (VAE), enabling effi-
cient computation. Its core architecture uses a U-Net with
cross-attention layers conditioned on text embeddings from
a CLIP encoder.

Due to the proprietary nature and limited accessibility
of DALL-E, we focus on the open-source Stable Diffu-
sion model in this work. Its extensibility and compatibility
with fine-tuning techniques such as DreamBooth and LoRA
make it a practical foundation for exploring identity consis-
tency in text-to-image generation.

2.2. Fine-Tuning

As diffusion models became increasingly viable for im-
age generation, much work went into fine-tuning founda-
tion models to achieve personalization with minimal com-
putation power. These fine-tuning methods entail additional
training on a set of reference examples, with some subset
of the parameters being adjusted while the others remain
frozen. The fundamental trade-off here is between addi-
tional shifting of the weights for more personalization and
the computational strain of modifying many parameters.

One method that made strides in fine-tuning with very
little compute is Low Rank Adaptation (LoRA) [5], which

freezes the model weights and instead inserts learnable low-
rank matrices. While LoRA was found to be effective in ap-
plications such as style transfer, its minimal changes to the
foundation model implied less power in strong personaliza-
tion to the reference image.

As an alternative to LoRA, DreamBooth [6] performs
full fine-tuning of the model weights, using a small set of
images tied to a unique text identifier. By associating a
rare token with a particular subject (e.g., a person or ob-
ject), DreamBooth enables the model to internalize specific
visual features of that subject and reproduce them in novel
contexts. This method enables more faithful identity preser-
vation than LoRA but comes at the cost of greater compu-
tational overhead and risk of overfitting.

While DreamBooth and LoRA focus on modifying the
model to internalize new identities or styles, there have been
additional models like ControlNet [7] which take a differ-
ent approach. Rather than fine-tuning for personalization,
it augments diffusion models with structural guidance (e.g.,
poses, edge maps, or depth). ControlNet operates by adding
a parallel trainable branch to the existing model, enabling
spatial or compositional control over the generated output.

2.3. Character Consistency Approaches

As fine-tuning methods have advanced, there has been
an increased demand for character consistency across im-
age generations beyond the performance of existing meth-
ods. New approaches include StoryMaker [8], a tuning-free
pipeline designed to generate coherent characters across
multiple images in a narrative setting. This framework fo-
cuses on preserving clothing, hairstyle, and body structure
across scenes. It accomplishes this by conditioning on facial
features and full-body character crops, using a Perceiver
Resampler (PPR) to extract character representations. An-
other modern model is The Chosen One [9], which uses
iterative procedures to extract identity features from the ref-
erence images.

While these approaches yield successful results, they
are more computationally expensive and complex than the
optimized fine-tuning methods mentioned above. In this
project, we seek to see if we can recreate the same level
of character consistency with a simpler pipeline, lever-
aging the well-established fine-tuning methods that have
widespread usage and greater general support.

3. Data
This project uses the Stable Diffusion v2 model [10]

from StabilityAI (accessed via Hugging Face) as the base-
line. This model is a latent diffusion model composed of a
U-Net backbone [11] with cross-attention layers, operating
in the latent space of an autoencoder.

As an example to enable comparison between models,
the subject used is my dog, CoCo (the namesake of this
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project). The following five reference images of CoCo were
collected and augmented during training. These modifica-
tions included random cropping for diversity, cropping to
only the face of the subject, scaling to increase the size of
the subject, and adding randomly generated color filters.

Figure 2. Reference images of example character, CoCo the dog.

The following five sentences were used as test-time
prompts for generating a sample story, which are consistent
as a reference for all figures below.

(1) CoCo is sleeping on a big green sofa.
(2) CoCo is taking a walk on a grassy field with flowers.
(3) CoCo walks along the ocean and trots on the beach.
(4) CoCo rests inside of an orange towel.
(5) CoCo drinks from a silver bowl full of water.

4. Methods
4.1. Stable Diffusion

As the baseline model, we use the latent Stable Diffusion
v2 model [10] from StabilityAI. This model was trained
by learning latent representations z0 = E(x0) when given
original images x0. In training, the forward diffusion pro-
cess gradually adds noise, producing a noisy latent zt sam-
pled from the distribution q(zt | z0). The U-Net model
ϵθ(zt, t, τ) predicts the noise component ϵ needed to de-
noise zt, conditioned on the timestep t and text embedding
τ . The denoising loss L is then minimized:

L = Ez0,t,ϵ

[
∥ϵ− ϵθ(zt, t, τ)∥22

]
Given the empirical success of stable diffusion models and
their ability to generate specified images conditioned on text
prompts, this model is well suited for our task. Further,
given our limitations on data, training time, and compute,
we opt to leverage this foundation model and fine-tune it to
personalize it for our task.

4.2. Token Substitution

Fine-tuned language models often rely on learned token
associations to generate consistent depictions of subjects.
To encourage consistency in the model’s outputs at test
time [12] and leverage descriptive learned features within
the model, we provide additional textual context by aug-
menting the character identifier with descriptive informa-
tion. Specifically, we replace occurrences of Coco in the
prompt with the phrase: Coco, a white Bichon Frise puppy
with dark black eyes and wearing a red collar.

4.3. DreamBooth and Data Augmentation

Our approach builds upon DreamBooth, a personalized
fine-tuning method that enables a pretrained text-to-image
diffusion model (such as Stable Diffusion) to generate faith-
ful, novel images of a specific subject from just a few ref-
erence images [6]. The core challenge is to encode subject-
specific visual features into the model without sacrificing
its generalization capabilities or inducing overfitting. We
selected DreamBooth because it directly supports this goal
through a lightweight yet effective fine-tuning procedure
with a loss function that is optimized to reconstruct the sub-
ject in the reference images.

To bind a subject to a text prompt, DreamBooth in-
troduces a unique identifier token (e.g., CoCo) and fine-
tunes the model so that this token becomes associated with
the subject’s appearance. Given an input set of images
I = i1, i2, i3, i4, i5 representing the subject, we generate
augmented prompts such as “a photo of CoCo in a [scene]”
and train the model to reconstruct the subject within those
scene contexts. This encourages the model to learn the sub-
ject’s representation while maintaining its ability to gener-
alize to unseen prompts.

Formally, the objective combines a reconstruction loss
(to align the generated output with the subject) and a prior
preservation loss (to prevent overfitting by encouraging out-
puts similar to class-generic images). The loss function is:

L = Lreconstruction + λ · Lprior preservation

where λ controls the balance between subject fidelity and
retention of the model’s original distribution.

Given that the number of subject images is small, we ex-
perimented with input augmentations to improve general-
ization and robustness. In particular, we experimented with
random crops, facial cropping, and random filtering. These
techniques are motivated by image augmentation strategies
in contrastive learning and regularization, which help the
model focus on distinguishing features necessary for char-
acter consistency.

Specifically, we fine-tuned the models using Dream-
Booth for 750 epochs at learning rate 2.5 ·10−6 for the main
U-net layers and 250 epochs at learning rate 1 ·10−6 for the
text encoder, adapting code from DreamBooth scripts [13].

4.4. Low-Rank Adaptation (LoRA)

To tackle the challenge of adapting large text-to-image
models on limited data while maintaining photorealism and
stylistic consistency, we apply LoRA (Low-Rank Adap-
tation) [5], as a parameter-efficient fine-tuning method.
Rather than updating all model weights, LoRA introduces
learnable low-rank matrices A ∈ Rd×r and B ∈ Rr×k to
approximate the weight update

∆Θ = AB
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with r ≪ min(d, k). These updates are inserted into the
cross-attention and feed-forward layers at scalable weight
levels, while the pretrained weights remain frozen.

This approach is well-suited for our goal because it al-
lows precise stylistic adaptation with minimal computa-
tional overhead, reducing the risk of overfitting commonly
seen in full fine-tuning. We chose LoRA over alternatives
like full model updates or adapters due to its balance of ef-
ficiency and quality, enabling the model to retain general-
ization while specializing to new subjects. Our experiments
compare the output quality and style preservation of LoRA
with other methods, confirming its effectiveness in low-data
scenarios and assessing the effect of the LoRA weight scal-
ing hyperparameter.

Specifically, we fine-tuned LoRA for 750 epochs at
learning rate 1 · 10−4 using an AdamW optimizer, adapt-
ing code from Kohya fine-tuning scripts [14].

4.5. Composite Approaches and Evaluation

We construct a comprehensive set of configurations by
taking the Cartesian product over variations across Dream-
Booth, LoRA, and token substitution, resulting in 8 distinct
fine-tuned models built on top of the Stable Diffusion base-
line. This composite setup enables systematic ablation to
assess the individual and combined impact of each compo-
nent. We evaluate the models both qualitatively and quanti-
tatively to identify configurations that best preserve subject
fidelity, photorealism, and stylistic consistency.

For qualitative analysis, we inspect the model outputs
on the given example on subject CoCo. Quantitatively, we
evaluate using the following 4 metrics.

4.5.1 CLIP Similarity - Reference Similarity

This metric measures how similar the output images are
to the reference images of our character, calculated by
the average directed Hausdorff distance between the co-
sine similarities of CLIP embeddings for reference images
and output images. Specifically, note that we have 5 in-
put images I = {i1, i2, i3, i4, i5} and 5 output images
O = {o1, o2, o3, o4, o5}. We define the similarity s across
all images as the average cosine similarity of CLIP embed-
dings between the output image and its closest input image.
Let c be the cosine similarity function:

c(hx, hy) =
hx · hy

||hx||2 · ||hy||2

Then namely, with h(·) as the CLIP embedding function of
an image:

s =
1

|O|

|O|∑
n=1

max
i∈I

c(h(i), h(on)).

This formulation ensures that each output image is com-
pared to the reference image it most closely resembles in
the CLIP embedding space.

4.5.2 CLIP Similarity - Character Consistency

This metric measures how consistent the character is dis-
played across the output images of each model, measured
by the average cosine similarity of the CLIP embeddings
for each unique pair of output images from a given model.
Consider Opairs as a list of all unique subsets of O with car-
dinality 2. Let on1 and on2 represent the first output image
and second output image respectively in the nth pair of the
Opairs list.

With h(·) as the CLIP embedding function of an image,
we define the score

s =
1

|Opairs|

|Opairs|∑
n=1

c(h(on1), h(on2)).

4.5.3 LPIPS Distance - Character Consistency

This metric is the Learned Perceptual Image Patch Similar-
ity (LPIPS) distance [15] between output images per model,
which evaluates perceptual similarity between images by
comparing deep features extracted from multiple layers of
AlexNet [16]. We included this metric because LPIPS is
designed to better align with human perception of image
differences than traditional pixel-wise metrics. For two im-
ages x, y, we use the original LPIPS distance ℓ(x, y) where

ℓ(x, y) =

L∑
l=1

1

HlWl

∑
(h,w)

||wl ⊙ (fx
l − fy

l )||
2
2

such that fx
l , f

y
l refer to feature activations of layer l of

AlexNet, wl is the per-channel weight vector across feature
maps, and Hl,Wl are the height and weight of the feature
maps at layer l.

Then, to compute the total LPIPS distance across output
images for a single model, we again average the distance
across all pairs of output images so the final distance is

d =
1

|Opairs|

|Opairs|∑
n=1

ℓ(on1, on2).

4.5.4 Human Evaluation

Participants (n = 53) were asked to rank each of the 8 mod-
els from 1 (best) to 8 (worst) on two metrics: similarity of
the output to the reference images (provided to the partici-
pants) and the consistency of the character within the model
outputs. These ranks were averaged, with lower average
ranks being best.
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5. Experiments

5.1. Baseline

Without any additional fine-tuning, the baseline gener-
ates photorealistic images, but clearly has many flaws. Each
image features a different dog and is stylized in a different
way, from black and white to colorful. Crucially, the model
does not fully understand that CoCo is a dog, as seen by the
lack of a dog in the fifth image. Given the training of the
baseline model, the token CoCo was unlikely to have been
attributed directly to a white dog like in our reference, and
may have been associated with other unrelated images.

Figure 3. Output images for baseline stable diffusion model.

5.2. Token Substitution

As an improvement from the baseline, we see that to-
ken substitution at test time offers a simple yet effective
way to guide the model toward incorporating key visual el-
ements—such as Bichon, puppy, and red collar—that de-
fine the target character. By replacing generic tokens in the
prompt with more descriptive or specialized terms, we can
steer the generation process to consistently reflect certain
features across images.

While this strategy leads to more faithful inclusion of
desired attributes, it does not address deeper identity con-
sistency. The resulting images still exhibit notable variation
in the dog’s appearance, such as changes in face shape, fur
texture, and pose. This is expected, as token substitution
operates purely at the level of prompting without altering
any model parameters. Consequently, the model does not
develop an internalized representation of the character, lim-
iting the effectiveness of this method.

Figure 4. Outputs for stable diffusion with token substitution.

5.3. Character Grounding with DreamBooth

After fine-tuning the baseline model using DreamBooth
for 800 epochs, the generated outputs exhibit significantly
stronger resemblance to the reference character. The dog
is consistently recognizable as a Bichon puppy, with simi-
lar facial structure, fur texture, and color across all images.
These improvements stem from the fact that the model’s

weights have been updated to associate these personalized
features with the custom token CoCo.

While structural consistency has improved notably, es-
pecially in terms of facial features and overall body propor-
tions, stylistic consistency remains an issue. The lighting
conditions vary across images, with some generations ap-
pearing darker and others more brightly lit. Additionally,
the artistic rendering differs: the first two images adopt a
photorealistic style, whereas the final image appears more
like a sketch or digital painting.

These inconsistencies are likely due to the nature of the
DreamBooth training data, which consisted of realistic im-
ages but lacked explicit stylistic constraints. Without con-
ditioning on style or employing additional control mecha-
nisms, the model defaults to varying interpretations of the
prompt during sampling.

Figure 5. Outputs for DreamBooth fine-tuning.

As before, we see an improvement in consistency with
the addition of token substitution to draw attention to cer-
tain features, leading to a more uniform style across outputs.
However, there is still notable variation in lighting and shad-
ows that distinguishes the images.

Figure 6. Outputs for Dreambooth with token substitution.

5.4. Investigating Input Perturbations

In fine-tuning with DreamBooth, I experimented with
the reference images used in the fine-tuning process. Given
that the fine-tuning occurs on very few examples, it be-
comes clear that small perturbations in the input images
translate to large distortions in the output images as a symp-
tom of overfitting.

When the model is fine-tuned on whole-body images of
the subject in neutral lighting (Figure 6), the output images
are structurally well-formed without notable lighting de-
fects. However, when cropping the input images to only in-
clude the subject’s head, DreamBooth only shifts the model
parameters relative to the head of the subject. As seen in the
first and third images below, the output may include only a
floating head or the subject’s head attached to a mismatched
body, as other the other parameters have not been updated.
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Figure 7. Input photos cropped to the subject’s head.

Meanwhile, when cropping the input images randomly
such that parts of character are occluded, the parameter up-
dates in DreamBooth are unable to stitch together a full
representation of the character. These poorly cropped in-
puts lead to fully malformed outputs (Figure 8), with oddly
shaped bodies, missing facial features, and blurred textures.

Figure 8. Input photos randomly cropped.

Similarly, input images which are overexposed or have
unusual tints yield outputs which have those photo effects
magnified. As seen in Figure 9, the generated images from
these perturbed inputs feature strange lighting, strong shad-
ows, and odd tints which fully distort the image.

Figure 9. Input photos with random filters.

These experiments highlight the importance of choosing
consistent and neutral input images of the character with
balanced lighting, limited occlusion, and proper cropping.

5.5. Texture Consistency with LoRA

To explore a computationally lighter approach, we exam-
ined the outputs of fine-tuning LoRA on the baseline model.
As clearly seen in Figure 10, the characters in the output
lack consistency and bear little resemblance to the refer-
ence images. While the overall performance of LoRA fails
to compare to DreamBooth, this lightweight adjustment im-
pressively maintains consistent lighting effects, photorealis-
tic style, and the correct dog color across all the outputs.

Figure 10. Outputs for LoRA fine-tuning.

Given that LoRA freezes the main U-Net layers of the
model, it is expected that its ability to preserve charac-
ter identity is weaker than DreamBooth’s. However, this

update successfully captures lower-level features like gen-
eral lighting and style, which matches expectations given
LoRA’s use in style transfer. Again, we see improvement
in using token substitution for emphasizing identifying fea-
tures, but with visual differences between outputs given the
low-rank update on the reference images.

Figure 11. Outputs for LoRA with token substitution.

5.6. Analyzing LoRA Weight Sensitivity

In applying the learned LoRA parameters to the baseline
model, I explored the impact of the LoRA weight scaling
on the output images.

Figure 12. Outputs for DreamBooth with LoRA weights 0, 0.25,
0.50, 0.75, and 1 from left to right.

As seen in Figure 12, lower LoRA strength leads to im-
ages with blurrier edges and less strict adherence to style
with regard to the reference images. The lighting is darker
with heavier shadows and more stylized fur. Meanwhile,
higher LoRA strength yields images with textures closer to
the reference images, as exemplified in the stylization of the
subject’s fur.

LoRA
Weight

Reference
Similarity

(CLIP)

Character
Consistency

(CLIP)

Character
Consistency

(LPIPS)
0 0.9109 0.9258 0.6071

0.25 0.9074 0.9331 0.6436
0.50 0.9156 0.9247 0.6045
0.75 0.9132 0.9359 0.5935

1 0.9222 0.9365 0.5932

Table 1. Comparing reference similarity and character consistency
across LoRA weights.

These qualitative observations are supported by quanti-
tative results in Table 1. These results show that with regard
to both CLIP similarity and LPIPS distance, the full LoRA
weight 1 yields images with the greatest similarity to other
outputs as well as the original reference images. This LoRA
weight was used in the following models.
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5.7. Composite Models

When combining the two fine-tuning techniques, the out-
puts are more balanced with regard to style, texture, and
lighting, with reasonable resemblance of the character in the
outputs. The character’s likeness holds across the images,
but to a lesser degree than DreamBooth without LoRA. This
result highlights the trade-off in style consistency and iden-
tity preservation between DreamBooth and LoRA.

Figure 13. Outputs for composite model.

With the addition of token substitution, the additional
prompting of identifiable features seems to offset some of
the loss of identity caused by LoRA. In Figure 14, the sub-
ject bears clear resemblance to the reference images as well
as across output images, in a photorealistic style with clear
lighting and exposure.

Figure 14. Outputs for composite model with token substitution.

6. Results
6.1. Qualitative Analysis and Human Evaluation

Model Reference
Similarity
Avg. Rank

Output
Consistency
Avg. Rank

SD (Baseline) 7.9423 7.8274
SD + TS 6.4423 5.9615
SD + DB 2.8462 2.9808
SD + DB + TS 2.5769 1.9038
SD + LoRA 6.4615 6.7308
SD + LoRA + TS 3.9615 3.8272
SD + DB + LoRA 4.1923 4.1519
SD + DB + LoRA + TS 1.7115 2.3076

Table 2. Average ranking by humans measuring similarity between
the reference images and output photos (left) and the consistency
between output photos from the same model (right). Lower num-
bers are desireable (best is rank 1, worst is rank 8). SD = Stable
Diffusion, TS = Token Substitution, and DB = DreamBooth.

The average rankings across the outputs of the 8 mod-
els from n = 53 human participants are displayed in Table
2. The final composite model trained with DreamBooth and

LoRA and using token substitution ranked highest for simi-
larity to the reference images and ranked second highest for
character consistency across outputs. The model with only
DreamBooth and using token substitution also performed
very well, being ranked second highest for reference image
similarity and ranked highest for output consistency.

Notably, the addition of LoRA improves the similarity
between model outputs and the reference images. This dis-
tinction is due to the impact of LoRA on style, as the final
composite model yielded photorealistic images with neu-
tral lighting reminiscent of the input photos. Meanwhile,
the DreamBooth model without LoRA showed greater con-
sistency without needing to balance for style, thus ranking
higher across outputs.

6.2. Input-to-Output Reference Similarity

The CLIP similarity across model outputs corroborates
the human evaluation, both when the output images are un-
cropped and cropped to the subject’s face. By these seman-
tic metrics, the final composite model with token substitu-
tion has the highest similarity between the output images
and reference images, with the DreamBooth token substitu-
tion model in a close second.

Model CLIP
(Original)

CLIP
(Cropped)

SD (Baseline) 0.6996 0.7095
SD + TS 0.7798 0.7973
SD + DB 0.8373 0.8591
SD + DB + TS 0.8722 0.8589
SD + LoRA 0.7542 0.8054
SD + LoRA + TS 0.8599 0.8320
SD + DB + LoRA 0.7933 0.8482
SD + DB + LoRA + TS 0.8789 0.8592

Table 3. CLIP similarity scores comparing input photos and output
photos. SD = Stable Diffusion, TS = Token Substitution, and DB
= DreamBooth.

6.3. Within-Output Character Consistency

Similarly, the CLIP similarity and LPIPS distance met-
rics across only the output images per model suggest that
the top models are the composite model and DreamBooth
model, both with token substitution at test time. Notably,
the composite model is only outranked by the DreamBooth
model without LoRA on CLIP similarity when the output
images are cropped, likely due to the lesser effect on light-
ing and shadows where LoRA makes a big difference on
backgrounds.
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Model CLIP
(Orig.)

CLIP
(Crop.)

LPIPS
Dist.

SD (Baseline) 0.6602 0.6934 0.6519
SD + TS 0.7629 0.8130 0.6512
SD + DB 0.8167 0.8367 0.5655
SD + DB + TS 0.8774 0.8907 0.5547
SD + LoRA 0.7299 0.7922 0.6979
SD + LoRA + TS 0.8682 0.8759 0.5510
SD + DB + LoRA 0.7884 0.8729 0.5306
SD + DB + LoRA + TS 0.8950 0.8903 0.5142

Table 4. Metrics measuring character consistency between output
photos. Higher numbers are desirable for CLIP similarity while
lower numbers are desirable for LPIPS distance. SD = Stable Dif-
fusion, TS = Token Substitution, and DB = DreamBooth.

6.4. Failure Modes and Analysis

Even in the best model, there were patterns in failure
modes. In particular, the final model often hallucinated ex-
tra appendages or failed to distinguish between the fur of
the subject and an object with a similar texture (like a rug).
Another common failure case was the generation of the col-
lar, which often featured other visually similar objects such
as pocketknives, razor, and can openers.

Figure 15. Examples of failures in generating the subject.

These issues can likely be attributed to DreamBooth
overfitting to sparse visual cues due to the small data set
of reference images. When these input images have corre-
lated background elements or lighting artifacts, the model
can magnify these unintended features (as in Section 5.4)
and incorrectly associate certain shapes with broader object
categories. Especially since Stable Diffusion operates in a
dense latent space, the model may struggle to cleanly sepa-
rate terms like fur and collar. This effect can also be ampli-
fied by the applied LoRA, as the weights in LoRA are de-
signed to amplify certain stylistic features and in these cases
accidentally override the realistic style of local objects.

7. Conclusion
This project investigated how to generate consistent,

high-quality images of a character across different scenes
using text prompts. The key finding was that the most ef-
fective pipeline combined a Stable Diffusion model fine-
tuned with both DreamBooth and LoRA, along with token
substitution at inference time to emphasize key identifying
features. DreamBooth was highly effective at encoding sub-
ject identity but prone to overfitting, which underscored the
importance of carefully selected, well-cropped, and diverse
reference images. LoRA introduced valuable stylistic con-
trol, though experiments revealed a trade-off between style
adherence and identity preservation. Across all models, to-
ken substitution consistently improved fidelity to the refer-
ence subject, particularly when used alongside both Dream-
Booth and LoRA to balance the competing demands of re-
alism and stylistic alignment.

Despite these promising results, we recognize the lim-
itations of this pipeline. The model remains sensitive to
small background features in the input images, likely due
to overfitting in DreamBooth and the amplifying effect of
LoRA. Future work could focus on developing automated
or guided techniques for selecting optimal reference images
to mitigate this issue. Additionally, the project was lim-
ited to a single LoRA layer. Further research could explore
using multiple LoRA modules to capture distinct elements
of style, or integrating alternative style transfer techniques
such as neural style transfer for greater flexibility in down-
stream applications across art styles.

8. Contributions & Acknowledgments
This project was completed independently, without col-

laborators or shared work across courses. It builds upon
publicly available training scripts for fine-tuning with
DreamBooth [13] and LoRA [14], which were adapted to
suit the specific objectives of this work. My contribu-
tions include designing the study, collecting and augment-
ing data, tuning hyperparameters, fine-tuning models with
DreamBooth and LoRA, developing and computing task-
specific evaluation metrics, performing ablation studies on
the composite models, and conducting error analysis and
symptom diagnosis.
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Library Version
PyTorch 2.1.0
NumPy 1.26.4

Transformers 4.41.1
Diffusers 0.28.0

Huggingface Hub 0.23.0
Torchvision 0.16.0
Pillow (PIL) 10.3.0

LPIPS 0.1.4
SciPy 1.13.1

Table 5. Library dependencies used in this project.
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